“a bluebird is a small blue-colored bird and a bird is a feathered flying vertebrate.”

This may be represented as a set of logical predicates:

feathers

small

Figure 1.4

If it doesn’t rain tomorrow, Tom will go to the mountains.

hassize(bluebird,small).

hascovering(bird,feathers).

hascolor(bluebird,blue).

hasproperty(bird,flies).

isa(bluebird,bird).

isa(bird,vertebrate).

vertebrate
ISA
hascovering hasproperty
- bird RE——
A
ISA
hassize hascolor
| bluebird [

Semantic network description of a bluebird.

— weather(rain,tomorrow) = go(tom,mountains)

Emma is a Doberman pinscher and a good dog.
gooddog(emma) A isa(emma,doberman)

All basketball players are tall.
V X (basketball _player(X) = tall(X))

Some people like anchovies.

3 X (person(X) likes(X,anchovies)).

If wishes were horses, beggars would ride.
equal(wishes,horses) = ride(beggars).

Nobody likes taxes.
— 3 X likes(X,taxes).

flies

blue

Page |1

Page |2

233 A Unification Example
The behavior of the preceding algorithm may be clarified by tracing the call
unify((parents X (father X) (mother bill)), (parents bill (father bill) Y)).

When unify is first called, because neither argument is an atomic symbol, the function will
attempt to recursively unify the first elements of each expression, calling

unify(parents, parents).

1. unify((parents X (father X} (mother bill)}, (parents bill (father bill) Y})

Unify first elements
and apply
_ » substitutions to rest

2. unify(parents, parents) 3. unify((X (father X) (mother bill)),(bill (father bill) Y)}

Figure 2.5 Initial steps in the unification of (parents X
(father X} (mother bill)) and (parents bill
(father bilt) Y).

1. unify({(parents X (father X) (mother bill)), (parents bill (father bill) Y))

Unity first elements
and apply
4 substitutions to rest

2. unify(parents, parents) 3. unify({X (father X) (mother bill)),(bill (father bill) Y})

Unify first elements
and apply
P substitutions to rest

4. unify(X,bill) ' 5. unify(((father bill) (mother bill)),{{father bill) Y}))

Figure 2.6 Further steps in the unification of (parents X
(father X) (mother bill)) and (parents bill (father
bill) Y).

Page |3

1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))

Unify first elements

and apply
_# substitutions to rest

2. unify(parents, parents) 3. unify((X (father X) {(mother bilf)), (bill (father bill) Y))

Unify first elements

and apply \
_# substitutions to rest \

\
return {(mother bill)/Y}

A
\

Y

4. unify(X.bill 5. unify(((father bill) (mother bill)), ((father bilf) Y))

Unify first elements
and apply
_# substitutions to rest

6. unify((father bill), {father bill}} 11. unify({(mother bill)), (Y))
Unify first elements Unify first elements
andapply % and apply
substitutions to rest \\ y substitutions to rest
/ retum {} /
retumn {} ' return {{mother billyY}
4 \ A
A !
! I
7. unify(father, father) 8. unify((bill), (bill)) 12. unify((mother bill), Y} - 13. unify((}, ()
Unify first elements '
and apply
substitutions to rest \‘
\
return { }
/ [

retumn { } 4

4 \

1

- i

9. unify(bill, bill) 10. unify((), ())

Figure 2.7 Final trace of the unification of (parents X
(father X) (mother bili)) and (parents bill
(father bill) Y).

74

PART i/ ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

EXAMPLE 334

This example is taken from the predicate calculus and represents a goal-driven graph
search where the goal to be proved true is a predicate calculus expression, often containing
variables. The axioms are the logical descriptions of a relationship between a dog, Fred,
and his master, Sam.

The facts and rules of this example are given as English sentences followed by their
predicate calculus equivalents:

L.

gooddog(X)

Fred is a collie
collie(fred).

Sam is Fred’s master.
master(fred,sam).

It is Saturday.
day(saturday).

It is cold on Saturday.
— (warm(saturday)).

Fred is a trained dog.
trained(fred).

Spaniels or collies that are trained are good dogs.
V X[spaniel(X) v (collie(X) A trained(X)) = gooddog(X)]

If a dog is a good dog and has a master then he will be with his master.
v (X,Y,Z) [gooddog(X) A master(X,Y) A location(Y,Z) = location(X,Z)]

If it is Saturday and warm, then Sam is at the park.
day(saturday) A warm(saturday) = location(sam,park).

If it is Saturday and not warm, then Sam is at the museum.

day(saturday) A — (warm(saturday)) = location(sam,museum).

Direction

focation (X,2) of search

@e@ @cation(Y.Z)

[collie(X)) [trained(X)] (master(fred.sam)] (day(saturday)) (-‘ (warm(saturday)))

(colieqired) | [trainedired))

Page |4

Goal

J. cot'4ydy

Zz =coty

) J'_ dz
z4(1 +22)

J’ oz

for

b.

et
{1 -x2)2

X =siny

J' sinty
cos?y

dy

Trigonometric | identity

jtan 4 ydy

Zz =tany

dz

1 +z4

Zatan_ééf

‘J'az

24

(1 +z3)(1 -z2)4

dz

Divide numerator

by denominat

or

) dz

.[(-1 +22+

1+22

dz

1+z

J

Page |5

Z =tanw

f 22

[

Figure 3.22 And/or graph representing part of the state
space for integrating a function.

A

C

Use this algorithm to search the graph in Figure 4.25.

D

W=y

[
h(A) = 1 I
h(B) = 2
h(C) = 5
h(D) = 3
h(E) = 2

h(F) =5
h(G) =1
h(H) =3
h{t) =1

Figure 4.25

Page |6

Vv X good_student(X) A M study_hard(X) = graduates(X)

V'Y party_person(Y) A M not(study_hard(Y)) = not(graduates(Y))
good_student(peter)

party_person(peter)

V'Y very_smart(Y) A M not(study_hard(Y)) = not(study_hard(Y))
v X not(very_smart(X)) A M not(study_hard(X)) = not(study_hard(X))
From these clauses we can infer a new clause:

VvV Z M not(study_hard(Z)) = not(study_hard(Z))

V X good_student(X) A M study_hard(X) = study_hard(X)
V'Y party_person(Y) = not (study_hard(Y}))
good_student(peter)

party_person(peter)

Breathe
Assumed hierarchy that y
explains response data ~~has _ gkin

ANIMAL
%g
Move

, Fly

has

BIRD —7==—Wings FISH

%A ,
Feathers

@, 15
-
1.4
g 1.3 [l
CANARY OSTRICH é’ " {A canary ¢
o, -
c?e fp § ® 1.2
g 2
. S 1.1
Sing Yellow Fly Tall @ /
T y0l—eZ—
A canary

Page |7

form of :
-;E water Iq—
hardness
- soft
texture
— o] slippery |——
made of color
———=[__snow | white]
temperature
o cold
[Conowman] g
snowman A
instance of temperature
form of
texture
hardness
- hard |
color

,_E clear l

Figure 8.2 Network representation of properties of snow and ice.

time
% past |
agent object
-)] -
instrument -

Figure 8.5 Case frame representation of the sentence
“Sarah fixed the chair with glue”

Page |8

Flies is a 1-ary relation,

dog —--——* - brown

Color is a 2-ary relation.

| | father
child ———>

mother

Parents is a 3-ary relation.

Figure 8.11 Conceptual relations of different arities.

person:mary 4—— give ———--——>

person:john - | book

Figure 8.12 Conceptual graph of the sentence “Mary
gave John the book.” -

dog:emma

?

brown

Figure 8,13 Conceptual graph indicating that the dog
named emma is brown.

dog:#1352

anure 8 14 Conceptual graph mdlcatlng that a particular

dog:#1352

?

(but unnamed) dog is brown.

l

?

>

name

Figure 8.15 Conceptual graph indicating that a dog

Ilemmall

named emma is brown.

“brown

brown

Page |9

@ <« porson:#941765 ———> @

"MeGill "Nancy"

] L"II

Figure 8,16 Conceptual graph of a person with three names.

dog:*X <—-— scratch —> ear

paw —i* dog:*X

Figure 8.17 Conceptual graph of the sentence “The dog
scratches its ear with its paw.”

Page |10

Page |11

9y @ - eat [—» —> bone
dog > @ »| brown

923 animal:"emma" —————————» { location » | porch

color »| brown

The restriction of 9y

o dog:"emma" — - @ » porch
\

@ »| brown
The join of g1and 94

'94? <———1 eat | —-—>——--——> bone

dog:"emma" (" location » [porch

Y
color color) » | brown

i~

The simplity of g i

-« eat .—--—> beone

dog:"emma" |}—————— (" location » [porch

color » | brown

Figure 8.19 Examples of restrict, join, and simplify operations.

o
e

person:Tom ——————» (experiencer >

Page |12

believe

'

proposition

person:jane -———* likes
pizza

Figure 8.21 Conceptual graph of the statement “Tom believes

that Jane likes pizza,” showing the use of a
propositional concept.

3 X 3Y (dog(X) A color(X,Y) A brown(Y)).

Y XYY (= (dog(X) A color(X,Y) 1 pink(Y))).

proposition:

dog —-————b— pink

Figure 8.22 Conceptual graph of the proposition “There are no

pink dogs.”

Page |13

hotel bed —> sleeping
e king
— mattress —» @
> frame firm

hotel bed —>| matiress
superclass: bed superclass: cushion
use: sleeping : firmness: firm

size: king

P g

Figure 8.23 Conceptual graph and frame descriptions of
a hotel bed.

bird

superclass: vertebrate

reproduces_by: lays_eggs

covering: feathers

flies: t
I R

flightless bird songbird scavenger

superclass: bird superclass: bird superclass: bird

flies: nil diet: (bugs seeds) diet: (garbage carrion)
penguin canary sparrow
superclass: flightless bird - superclass: songbird- superclass: songbird —
habitat: south pole habitat: tropical habitat: north america
diet: fish
opus tweety
instance of: penguin- instance of: songbird-

Figure 8.27 Inheritance system description of birds.

person: john

A

part

Y

belief }——» (experiencer

eat

soup

hand

kate

Page | 14

@@ proposition:

proposition:

likes

»(experiencer
(ot D>

john

pizza

Figure 8.31 Two conceptual graphs to be translated into English.

isa (canary, bird).
isa (ostrich, bird).
isa (bird, animal).
isa (opus, penguin).

isa (robin, bird).
isa (penguin, bird).
isa (fish, animal).

isa (tweety, canary).

hasprop (tweety, color, white).
hasprop (canary, color, yellow).

hasprop (robin, color, red).

hasprop (bird, travel, fly).
hasprop (ostrich, travel, walk).
hasprop (robin, sound, sing).
hasprop (bird, cover, feathers).

hasprop (penguin, color, brown).

hasprop (fish, travel, swim).

hasprop (penguin, travel, waik).
hasprop (canary, sound, sing).
hasprop (animal, cover, skin).

Page |15

animal covering
A A L 7 skin
travel isa isa
fly ~
travel
fish
covering ; l
feathers | «—————| Pird _
A % swim
isa isa
isa isa
ostrich penguin canary robin
travel
isa
travel color
—1 walk — ™| yellow
color color
. l ‘r
IS8 sound - sound
brown ——»i sing red
color -
opus tweety white
Figure 9.7 Portion of a semantic network desc'ribing birds and

other animals.

Page | 16

like |——» (experiencer)————»! animate
> entity

bite —» - dog -
L entity part
-———)— " teeth

Figure 11.11 Case frames for the verbs “like” and “bite.”

7: l like |—-> dog: #1

A

/ - Cooe >~]

= Cottea > [Cemiy_]

Page |17

we use two types of brackets: () and []. Where possible in the derivation, we remove
redundant brackets: The expression we will reduce to clause form is:

(i) (vX)([a(X) A bX)] = [e(X,]) A @YHED)[e(Y.Z)] — d(X,Y))])) v (VX)(e(X))

1. First we eliminate the — by using the equivalent form proved in Chapter2:a — b=
— a v b. This transformation reduces the expression in (i) above:

(i) (vX)(= [a(X) A BX)] v [e(X.)) A (Y} = E2)[e(Y.2)] v dXY)))) v (VX)(e(X))

2. Next we reduce the scope of negation. This may be accomplished using a number of
the transformations of Chapter 2. These include:

~(—a)=a

= (3X) a(X) = (VX) - a(X)
= (¥X) b(X) = (3X) = b(X)
—(aab)=-av-b
—~(avb)==aa-b

Using the second and fourth equivalences (ii) becomes:
(i) (VX)([= a(X) v = b(X)] v [e(X.) A BY)(VZ)[= c(Y,2)] v d(X,Y)]) v (VX)(e(X))

3. Next we standardize by renaming all variables so that variables bound by different
quantifiers have unique names. As indicated in Chapter 2, because variable names are
“dummies” or “place holders,” the particular name chosen for a variable does not
affect either the truth value or the generality of the clause. Transformations used at
this step are of the form:

(¥X)a(X) v (YX)b(X)) = (YX)a(X) v (YY)b(Y)
Because (jii) has two instances of the variable X, we rename:
(iv) (vX)([= a(X) v = b(X)] v [e(X,]) A @Y)(VZ) [- c(Y.2)] v d(X,Y)]) v (YW)(e(W))

4. Move all quantifiers to the left without changing their order. This is possible because
step 3 has removed the possibility of any conflict between variable names. (iv) now
becomes:

(v) (VX)EYNVZUYW)[- alX) v = b(X)] v [e(K.]) A (— e(Y,Z) v d(X,Y))] v e(W))

After step 4 the clause is said to be in prenex normal form, because all the quantifiers
are in front as a prefix and the expression or matrix follows after.

570 PART V / ADVANCED TOPICS FOR Al PROBLEM SOLVING

At this point all existential quantifiers are eliminated by a process called
skolemization. Expression (v) has an existential quantifier for Y. When an
expression contains an existentially quantified variable, for example, (3Z)(foo(...,
Z,...)), it may be concluded that there is an assignment to Z under which foo is true.
Skolemization identifies such a value. Skolemization does not necessarily show how
to produce such a value; it is only a method for giving a name to an assignment that
must exist. If k represents that assignment, then we have foo(...,K,...). Thus:

(3X)(dog (X)) may be replaced by dog(fido)

where the name fido is picked from the domain of definition of X to represent that
individual X. fido is called a skolem constant. If the predicate has more than one
argument and the existentially quantified variable is within the scope of universally
quantified variables, the existential variable must be a function of those other
variables. This is represented in the skolemization process:

(VX) (3Y) (mother (X,Y))

This expression indicates that every person has a mother. Every person is an X and the
existing mother will be a function of the particular person X that is picked. Thus
skolemization gives:

(vX)mother (X, m(X))

which indicates that each X has a mother (the m of that X). In another example:
(VX)(VY)3Z)(YW)(foo(X,Y,Z,W))

is skolemized to:

(VXHVY)(YW)(foo(X,Y,H(X,Y),W)).

We note that the existentially quantified Z was within the scope (to the riglit of)
universally quantified X and Y. Thus the skolem assignment is a function of X and Y
but not of W. With skolemization (v} becomes:

(vi) (YX)(VZ)(YW)([= a(X) v = b(X)] v [e(X.]) A (= ¢(f(X).2) v dX X)) v e(W))

where f is the skolem function of X that replaces the existential Y. Once the

skolemization has occurred, step 6 can take place, which simply drops the prefix.

Drop all universal quantification. By this point only universally quantified variables
exist (step 5) with no variable conflicts (step 3). Thus all quantifiers can be dropped,
and any proof procedure employed assumes all variables are universally quantified.
Formula (vi) now becomes:

Page |18

CHAPTER 12/ AUTOMATED REASONING

571

Page |19

(vii) [= a(X) v = bX)] v [e(X,1) A (= c(f(X),Z) v d(X,£(X)))] v (W)

7. Next we convert the expression to the conjunct of disjuncts form. This requires using
the associative and distributive properties of A and v. Recall from Chapter 2 that

av(bvc)={avb)ve
an{bac)=(aab)ac

which indicates that A or v may be grouped in any desired fashion. The distributive
property of Chapter 2 is also used, when necessary. Because

a_/\(bvc)

is already in clause form, A is not distributed. However, v must be distributed across
A using:

avbac)=(av bya(avc)
The final form of (vii} is:

wiii) [~ a(X) v = b(X) v e(X,I) v e(W)] A
[= a(X) v = b(X) v = c(f(X),2) v d(X.{(X)) v e(W)]

8. Now call each conjunct a separate clause. In the example (viii} above there are
two clauses:

(ixa) = a(X) v = b(X) v e(X.) v e (W)
(ixb) - a(X) v = b(X) v = ¢ (f(X).2) v d (X,f(X)) v e (W)

9. The final step is to standardize the variables apart again. This requires giving the
variable in each clause generated by step 8 different names. This procedure arises
from the equivalence established in Chapter 2 that

(vX) (a(X) A b(X)) = (VX) a (X} A (VY) b(Y)

which follows from the nature of variable names as place holders. (ixa) and (ixb) now
become, using new variable names U and V:

(xa) — a(X) v = b(X) v c(X,)) v e (W)
(xb) = a(U) v = b(U) v = c(f(U).2) v d (U(U)) v e (V)

The importance of this final standardization becomes apparent only as we present the
unification steps of resolution. We find the most general unification to make two predicates
within two clauses equivalent, and then this substitution is made across all the variables of
the same name within each clause. Thus, if some variables (needlessly) share names with

572 PART V / ADVANCED TOPICS FOR Al PROBLEM SOLVING

Page |20

Anyone passing his history exams and winning the lottery is happy.
¥ X (pass (X,history) A win (X,lottery) — happy (X))
Anyone who studies or is lucky can pass all his exams.
V X VY (study (X) v lucky (X) — pass (X,Y))
John did not study but he is lucky.
— study (john) A lucky (john)
Anyone who is lucky wins the lottery.
¥V X (lucky (X) — win (X,lottery))
These four predicate statements are now changed to clause form (Section 12.2.2):

— pass (X, history) v — win (X, lottery) v happy (X)
— study (Y) v pass (Y, Z)

— lucky (W) v pass (W, V)
— study (john)

lucky (john)
= lucky (U) v win (U, lottery)

2L o

Into these clauses is entered, in clause form, the negation of the conclusion:
7. - happy (john)

The resolution refutation graph of Figure 12.5 shows a derivation of the contradiction and,
consequently, proves that John is happy.
As a final example for this subsection, suppose:

All people who are not poor and are smart are happy. Those people who read are not stupid.
John can read and is wealthy. Happy people have exciting lives. Can anyone be found with an
exciting life?

We assume VX (smart (X) = - stupid (X)) and VY (wealthy (Y) = — poor (Y)), and get:

VX {— poor (X) A smart (X) — happy (X))
VY (read (Y) — smart (Y))

read (john) A — poor (john)

VZ (happy (Z) — exciting (Z))

576 PART V/ ADVANCED TOPICS FOR Al PROBLEM SOLVING

Page |21

- pass(X, history) v = win(X, lottery) v happy(X) win(U, lottery) v = lucky(U)

W

- pass(U, history) v happy{U) v - lucky(U) - happy(john)
HOhW
lucky(john) - pass(john, history) v - lucky(john)
\/
= pass(john, history) - lucky(V) v pass(V, W)
{iohn/V, hisioW
= lucky(john) lucky(john}
V
O

Figure 12.5 One resolution refutation for the “happy student” problem.

The negation of the conclusion is:
- AW (exciting (W))

‘These predicate calculus expressions for the happy life problem are transformed into the
following clauses:

poor (X) v — smart (X) v happy (X)
—read (Y) v smart (Y)

read (john)

— poor (john)

— happy (Z) v exciting (Z)

- exciting (W)

The resolution refutation for this example is found in Figure 12.6.

CHAPTER 12 / AUTOMATED REASONING 577

Page |22

- exciting(W) - happy(2) v exciting(Z)
W
- happy(Z) poor(X) v - smart{X) v happy(X)
W
poor(X) v = smart(X) = read(Y) v smart(Y)
W
= poor(john) poor(Y) v - read(Y)
UOW
= read{john) read(john)

\/
O

Figure 12.6 Resolution proof for the “exciting life” probiem.

12.2.4 Strategies and Simplification Techniques for Resolution

A different proof tree within the search space for the problem of Figure 12.6 appears in
Figure 12.7. There are some similarities in these proofs; for example, they both took five
resolution steps. Also, the associative application of the unification substitutions found
that John was the instance of the person with the exciting life in both proofs.

However, even these two similarities need not have occurred. When the resolution
proof system was defined (Section 12.2.3) no order of clause combinations was implied.
This is a critical issue: when there are N clauses in the clause space, there are N2 ways of
combining them or checking to see whether they can be combined at just the first level!
The resulting set of clauses from this comparison is also large; if even 20% of them
produce new clauses, the next round of possible resolutions will contain even more
combinations than the first round. In a large problem this exponential growth will quickly
get out of hand.

For this reason search heuristics are very important in resolution proof procedures, as
they are in all weak method problem solving. As with the heuristics we considered in

578

PART V / ADVANCED TOPICS FOR Al PROBLEM SOLVING

- happy(Z) v exciting(Z) poor(X) v - smart(X) v happy(X)
{Z/X}
= read(Y) v smart(Y) exciting{Z) v poor(Z) v =~ smart(Z)
W
= read(Y) v exciting(Y) v poor(Y) = poor(john)
{;W
read(john) - read(john) v excltlng(john)
T~
exciting(john) = exciting(W)
{}
[l

Figure 12.7 Another resolution refutation for the example
of Figure 12.6. :

Chapter 4, there is no science that can determine the best strategy for any particular prob-
lem. Nonetheless, some general strategies can address the exponential combinatorics.

Before we describe our strategies, we need to make several clarifications. First, based
on the definition of unsatisfiability of an expression in Chapter 2, a set of clauses is unsat-
isfiable if no interpretation exists that establishes the set as satisfiable. Second, an infer-
ence rule is refutation complete if, given an unsatisfiable set of clauses, the unsatisfiability
can be established by use of this inference rule alone. Resolution with factoring has this
property (Chang and Lee 1973). Finally, a strategy is complete if by its use with a refuta-
tion-complete inference rule we can guarantee finding a refutation whenevera set of
clauses is unsatisfiable. Breadth-first is an example of a complete strategy.

The Breadth-First Strategy The complexity analysis of exhaustive clause comparison
just described was based on breadth-first search. Each clause in the clause space is
compared for resolution with every clause in the clause space on the first round. The
clauses at the second level of the search space are generated by resolving the clauses
produced at the first level with all the original clauses. We generate the clauses at the nth
level by resolving all clauses at level n — 1 against the elements of the original clause set
and all clauses previously produced.

Page |23

CHAPTER 12/ AUTOMATED REASONING

579

Page |24

- exciting(W - happy(Z) v exciting(2)

{Z/W\/

- happy(Z) poor(X) v =~ smart(X) v happy(X)

W

- poor(john) poor(X) v = smar(X}

“W

- smart(john) - read(Y) v smart(Y)

5°W

read(john) - read(john)

V
O

Figure 12,9 Using the unit preference strategy on the
“exciting life” problem.

we produce a resultant clause that has fewer literals than the clauses that are resolved to
create it, we are closer to producing the clause of no literals. In particular, resolving with a
clause of one literal, called a unit clause, will guarantee that the resolvent is smaller than
the largest parent clause. The unit preference strategy uses units for resolving whenever
they are available. Figure 12.9 uses the unit preference strategy on the exciting life
problem. The unit preference strategy along with the set of support can produce a more
efficient complete strategy.

Unit resolution is a related strategy that requires that one of the resolvents always be a
unit clause. This is a stronger requirement than the unit preference strategy. We can show
that unit resolution is not complete using the same example that shows the incompleteness
of linear input form.

The Linear Input Form Strategy The linear input form strategy is a direct use of the
negated goal and the original axioms: take the negated goal and resolve it with one of the
axioms to get a new clause. This result is then resolved with one of the axioms to get
another new clause, which is again resolved with one of the axioms. This process contin-
ues untit the empty clause is produced.

CHAPTER 12/ AUTOMATED REASONING 58"

Page |25

at(fido, Z) — at(fido, &) - at(john, X) v at(fido, X)
l {XxX/Z}
at(fido, X) ' — at(john, X) at(john, library)
l | {library/>}
at(fido, library) D

Figure 12.11 Answer extraction process on the
“finding fido” problem.

Everyone has a parent. The parent of a parent is a grandparent. Given the person John, prove
that John has a grandparent.

The following sentences represent the facts and relationships in the situation above.
First, Everyone has a parent:

(¥ X)@Y) p(X.Y)

A parent of a parent is a grandparent.

(v X}V Y)(V Z) p(X.Y) A p(Y.Z) = gp(X,2)

The goal is to find a W such that gp(john,W) or 3 (W)(gp(john,W)). The negation of the
goal is — 3 (W)(gp(john,W)) or:

— gp(john,W)

gp (john, V) - gp (john, V) —~ P(W,Y) v = p(Y,Z) v gp(W,Z)
. {iohn/W, V/Z}

' .
gp (john, V) ~ p@iohn, Y) v —~ p(Y,V) p(X,pa(X))

{iohn/X, pa(X)/Y}

4
ap (john, V) - p{pa(john), V) p({X,pa(Xx))

{pa(ichn)/X, pa(X)/V}

v
gp (john, pa(pa(jchn))) L]

Figure 12.12 Skolemization as part of the answer
extraction process.

In the process of putting the predicates above in clause form for the resolution
refutation, the existential quantifier in the first predicate (everyone has a parent) requires a
skolem function. This skolem function would be the obvious function: take the given X
and find the parent of X, Let's call this the pa(X) for “find a parental ancestor for X .” For
John this would be either his father or his mother. The clause form for the predicates of
this problem is:

p(X,pa(X))
-~ pWY) v - p(Y,Z) v gp(W,2)
= gp(john,V)

The resolution refutation and answer extraction process for this problem are presented
in Figure 12.12. Note that the unification substitutions in the answer are

go(john,pa(pa(john)))

The answer to the question of whether John has a grandparent is to “find the parental
ancestor of John's parental ancestor.” The skolemized function allows us to compute this
result.

The general process for answer extraction just described may be used in all resolution
refutations, whether they be with the general unifications as in Figures 12.10 and 12.11 or
from evaluating the skolem function as in Figure 12.12. The process will yield an answer.
The method is really quite simple: the instances (unifications) under which the contradic-

Page | 26

